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Summary 

The use of venting formulae in explosion protection has been examined. The various 
types of formulae are discussed in detail and their strengths and weaknesses assessed. It is 
concluded that the most promising approach is a mathematical model by Yao which allows 
the pressure-time history of a confined or partially confined explosion to be evaluated 
numerically. 

Introduction 

There are two types of gas explosion, namely, deflagration and detonation. 
These two are distinguished, principally by their flame speed and also by 
their structure and destructive force. A deflagration involves a flame travelling 
through a combustible mixture at less than the ambient speed of sound in the 
mixture, whilst in a detonation the flame front is coalesced with a shock wave 
and travels at speeds whose values can be several times greater than the speed 
of sound in the medium at normal temperatures and pressures. Since pressure 
is transmitted at the local speed of sound of the medium, it is impossible to 
protect plant from the effects of detonations by the means of venting. This 
report will, therefore, be restricted to a consideration of deflagration explo- 
sions only. Fortunately detonations in gases or vapours are comparatively 
rare and are only likely to be experienced when the source of the ignition 
generates strong shock waves; or the explosioq occurs in a long pipe or duct, 
so that the flame has an opportunity of accelerating along the pipe and 
generating a strong shock wave; or when highly turbulent conditions prevail 
and/or the volumes of combustible gas involved are substantially larger than 
the volumes considered in existing venting formulae; or when mixtures of 
high burning velocity are present. 

The use and validity of venting formulae will receive particular attention, 
especially where the predictions from such formulae are relevant to confined 
explosions in relatively large volumes (> 600 m3). To facilitate the use of this 
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report, formulae will be classified according to their type and origin rather 
than on any strictly chronological basis. 

Venting 

The most common method of protecting structures from the effects of 
internal explosions is by means of pressure relief, by venting. Other means of 
protection of installations do of course exist, such as inerting with non- 
combustible gases (typically nitrogen or carbon dioxide) or using suppression 
systems. The latter depend on the prevention of explosion development by 
the use of either chemical inhibitors, especially halocarbons, or in some cases 
by means of materials which physically suppress the explosion reaction, e.g, 
water sprays or dry powders such as stone dust in coal dust explosions (all of 
the latter methods are commonly used for control in mines). These methods 
however, are generally less widely applicable. Thus they tend to be used 
either in conjunction with venting or by themselves when venting is not 
possible, as may be the case when an installation is below ground or the 
materials being handled are too toxic to permit them to be vented. 

Venting is possible because fundamental burning velocities (i.e. the max- 
imum velocity with which a plane flame front moves normal to its surface 
through the adjacent quiescent unburnt gas) are normally of the order l-10 
m/s (most hydrocarbon/air mixtures have fundamental burning velocities less 
than 1 m/s although flame speeds may be considerably higher [l] ) while the 
velocity of sound in air and most gaseous media is around 340 m/s at normal 
temperatures and pressures. This means that, except for all but the largest 
structures, pressure transmission may be regarded as effectively instantaneous 
but the rate of pressure rise will be relatively slow, subjecting the structure 
to be protected uniformly to a stress fixed by the amount of combustible 
material. Vents may therefore be located with equal value wherever feasible 
in a compartment or duct, providing the run-up distances from the point of 
ignition to the vents are similar. 

The maximum value of the explosion pressure in a confined deflagration 
explosion will depend on the relieving pressure of the vent, the time it takes 
to operate, the burnt gas temperature (any consequent increase in energy 
causes increases in pressure when confined and expansion when unconfined), 
the initial pressure and temperature of the gas, the amount of flammable gas 
and its composition and the rate of loss of heat to the walls of the vessel. The 
latter is relatively slow and an explosion may be regarded as an effectively 
adiabatic process. 

Completely confined explosions in compartments of dimension likely to 
be encountered in domestic and industrial premises are reasonably well under- 
stood [2] and will not be considered further, in that most plant and domestic 
structures are unlikely to withstand them. When an explosion is vented the 
important parameters for a given risk are the size of the vent relative to the 
vessel or duct, the scale and intensity of turbulence and the nature of the 
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ignition source (e.g. multiple ignition sources often produce higher explosion 
pressures than single ignition sources [ 31). The position of the ignition source 
relative to the vent is also important. However, since it is not possible to 
guarantee the position of an accidental ignition source, central ignition, which 
is likely to produce the highest pressures in spherical or rectangular structures, 
is normally assumed in most treatments so as to cater for the worst possible 
situation. 

For a non-vented gas explosion, with ignition at the centre of a spherical 
enclosure, the pressure-time history will be of the form indicated by curve 
‘A’ in Fig. 1. The pressure will increase, at first slowly and then more and 
more rapidly as the flame front comes into contact with an increasingly large 
surface area of unburnt gas. Finally the pressure will reach a maximum value 
as the flame front touches the walls and then slowly diminish as heat is dis- 
sipated through the walls of the vessel. 

In a moderately large vessel (102-lo3 m3) the overall process may take 
several seconds to complete. The maximum explosion pressure Pmax may 
have a value of around 700 kN/m’ and at this pressure all but certain special- 
ly designed constructions, such as a pressure vessel, are likely to be demolished. 

The effects of explosion pressures on personnel is discussed elsewhere [ 41. 
However in general humans can survive pressures greater than those that 
damage structures. 

When a pressure relief is installed in a vessel, operating at a pressure Pv, the 
pressure in the vessel may still continue to rise for 100 m/s or more to a peak 
value PI when the effect of the vent causes dp/dt to become negative. There- 

Fig. 1. A representation of a pressur~time history of an unvented (curve A) and vented 
(curve B) deflagrative explosion. 



after one might expect the pressure to fall to ambient pressure or below, but 
since the flame front is still expanding while the explosion proceeds dp/dt 
may become positive again and the pressure will rise. If this effect predom- 
inates over the effect of the rate of loss of material through the vent then 
dp/dt will continue to increase until the flame front reaches the surface of 
the vessel and a second pressure peak Pz will occur. The pressure-time 
history will thus take the form of Curve B in Fig. 1. 

A further pressure peak P3 may occur if the gas cools down sufficiently 
rapidly to reduce the pressure in the vessel below ambient, causing re-entry 
of ejected unburnt gases. Transient pressure may also be affected by oscilla- 
tions (spiking) being set up in the system [ 51. However, neither these nor the 
third pressure peak P3 are likely to be important in terms of their ability to 
damage the structure in which they occur providing the vents cannot reseal 
(e.g. hinged or spring loaded vent covers). 

The relative sizes of peaks 1 and 2 are determined by the size of the vent 
relative to the vessel, the magnitude of Pv, the flame speed and the scale and 
intensity of turbulence set up when the vent operates. An increase in Pv will 
cause PI to increase with respect to P2 ; while high flame speed and high 
turbulence such as that generated by the operation of bursting disc vents [6], 
will cause Pz to increase with respect to PI. Pz will also increase with respect 
to PI as the vent size becomes smaller for a given vessel. 

The separate peaks associated with PI and P2 may, depending on a variety 
of factors, merge completely. The merging of Pz with PI, and of PI with Pz 
may be distinguished physically. The merging of Pz with PI corresponds to a 
situation where dp/dt becomes negative after the operation of the vent. This 
will occur when the vent is relatively large or the flame speed low. The 
merging of PI with Pz corresponds to the situation where dp/dt remains 
positive after the opening of the vent and will occur when the vent is relative- 
ly small and flame speeds are high. 

The designer of industrial plant or domestic structures will be interested in 
the maximum pressure Pmax whether it be due to PI or P2. Ideally the designer 
requires the value of / :I Pmax dt sometimes called the pressure impulse 
(where tl and tz are the’times at which the structure is subjected to pressure 
greater than the maximum static pressure its weakest member can withstand, 
so as to design structures in which the weakest part can withstand the pressure 
impulse). However, there is little information on this aspect of the explosion 
resistance of buildings and plant and in most attempts to produce venting 
formulae the difference between static and dynamic pressure is ignored. 
Because buildings and plant can normally withstand higher transient than 
static pressures, designing for static pressure incorporates a safety factor. 

There have been numerous attempts to produce venting formulae which 
can predict the values of PI or Pz and their dependence on the various 
explosion parameters, especially venting parameters. These formulae and 
their associated difficulties are discussed below, special attention being paid 
to those approaches likely to predict values of Pmx in very large volumes 
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(i.e. 600 m3 or above). Practical experiments are too difficult and expensive 
for such large volumes to justify many tests, and a proven theoretical or 
empirical method of providing solutions is eminently desirable. 

Venting formulae 

Some of the earliest work was carried out by Cubbage and Simmonds 
[ 7,8] who measured the explosion pressures generated in large box-ovens (of 
volumes up to 14 m3) by town gas/air mixtures using central ignition. 

They attempted to relate the magnitude of the maximum pressure asso- 
ciated with each pressure peak, i.e. P1 and P2, to: 
(a) the volume of the vessel V; 
(b) the weight per unit area of the vent W; and 
(c) the size of the vent, expressed in terms of a venting ratio K, defined as 
the the ratio of cross-sectional area A, of the side of the oven where the vent 

was installed and the area of the vent A, i.e. K = AC/A,. 
They were able to show the following relationship held for their experiments: 

PI = (gKW + m,V-’ (1) 

where g and m are constants for any particular flammable gas/air mixture 
while for town gas the second pressure peak Pz was numerically equal to 
seven times the venting ratio, K, when Pz was expressed in kN/m* i.e. 

P2 = 7K (2) 

It is now customary to define K as the ratio of the area of the side of minimum 
cross-section to the area of the vent. As Cubbage and Simmonds invariably 
placed their vents in the side of minimum cross-section the alternative defini- 
tions of K are equivalent. 

Both formulae were found to hold over a wide range of conditions. Eqn. 1 
was shown to be valid for values of V of 0.23 to 4.08 m3, values of K from 1 
to 4 and of W from 8.8 to 34.2 kg/m*, but eqn.2 held over a smaller range of 
K as Pz began to show some dependence on the oven volume when K was 
greater than 2.5. It was also found that the pressure peak PI showed direct 
dependence on the burning velocity S of the gas/air mixture employed. A 
modified form of eqn. 1 was therefore proposed: 

PI = S (g, KW + mI)V-’ (3) 

where g, and ml are constants for any particular gas/air mixture. For a 25 
per cent town gas/air mixture which has a burning velocity of 1.2 m/s, the 
two constants g and m for eqn. 1 have values 0.51 and 3.34 and g, and m, for 
eqn. 3 have values of 0.43 and 2.78 respectively providing that PI is expressed 
in kN/m*, Vin m3 and Win kg/m*. 

Cubbage and Simmonds extended their work [8] up to volumes 14 m3 and 
found that these equations still held, even with the lower limit for W. In 
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these latter experiments K had values in the range of 1 to 3 and IV in the 
range of 1.5 to 34 kg/m’. 

Some doubt may be cast on the way the dependence of P1 on S has been 
introduced in eqn. 3 since there is no a priori reason to suppose that g and m 
will have the same value for other combustible mixtures or that they will 
show an identical dependence on S. 

Cubbage and Simmonds’ work has also been employed in a paper produced 
under the auspices of the British Ceramic Research Association [ 91. Once 
again reference is made to eqn. 3 for explosions generated in a 25 per cent 
town gas/air mixture, which is given as: 

P1 V’ = S (0.43 KW + 2.78) (4) 

while eqn. 2 is also presented as: 

P2 = 5.8s K (5) 

PI and Pz being expressed in kN/m’, S in m/s, W in kg/m2 and V in m3. The 
use of these equations in this form still remains open to the criticism raised 
above. 

If reference is made to the original work of Cubbage and Simmonds [7] 
the extent of the proportionality between the peak pressure and the burning 
velocity of the particular gas/air mixture employed may be questioned. Thus 
if we examine Table 1 (for which the data are taken from ref. 7) we see that 
values of P2 predicted by eqn. 5 are 27 per cent lower than the measured 
value with an actylene/air mixture and 25 per cent above the measured value 
for P2 with a carbon disulphide/air mixture. 

Cubbage and Simmonds have also reported [7] that they obtained 
anomalous results when using eqn. 4 to predict values of PI for an acetylene/ 
air mixture, the actual measured value of PI being 60 per cent greater than 
the predicted one. This seems to indicate that some caution must be used in 
the application of eqns. 4 and 5 to mixtures containing different flammable 
gases. 

Cubbage and Simmonds reported that the second pressure peak was fre- 
quently greater than the first [7]. It may be shown from eqns. 4 and 5 that 
P2 is less than PI when V is greater than (0.074 W + 0.3834)3 regardless of 
the size of the vent (V in m3 and W in kg me2). 

TABLE 1 

Per 
cent 

Gas mixture K P, (measured) S P, (predicted ) 
W/m*) (m/s) (kN/m’) 

25 Town gas/air 1.25 9.08 1.19 8.73 
10 Methane/air 1.25 2.79 0.57 2.65 

8 Carbon diiulphidelair 1.25 2.79 0.49 3.49 
9.4 Acetylene/air 1.25 11.89 1.31 9.36 
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Thus for the vents made of the heaviest material used ( W = 34.2 kg/m’) P2 
is less than P, unless V is greater than 25 m3 while for a light vent material 
( W = 1.46 kg/m’) and the maximum vent ratio K = 1, P2 is greater than PI 
unless V is less than 0.2 m3. This is as one would expect when using a flanged- 
lid type vent, since the lighter the vent the earlier it operates (i.e. W is related 
to the operating pressure of the vent). However, it is by no means automatic 
that Pz is greater than PI, although for the lighter venting materials and higher 
values of K this is probable. 

The British Ceramic Research Association also attempted to produce a 
relationship predicting the maximum pressure p2 produced in a gas filled 
room connected and adjacent to another, similarly gas filled, in which ignition 
originally occurred. They produced a formula of the form: 

P: = cYP1+pP; (f-5) 

where PI is the pressure produced in the first room where ignition occurred 
and ar and p are constants. Under the conditions of their work and with PI 
and P: expressed in kN/m’, a! and p had values of 0.59 and 0.163 respectively. 
Unfortunately this relationship was based on only four results, one of which 
(PI = 21 kN/m*, Pi = 83.83 kN/m’) was estimated from the consequences of 
the Ronan Point explosion. If true this equation is of some importance since 
it indicates that explosion pressures experienced in a series of adjacent and 
connected gas-filled rooms will increase in an almost exponential manner, 
i.e. a cascade effect. A simple quadratic treatment of eqn.6 together with 
regression analysis indicates that the limited range of data can be fitted very 
well (the correlation coefficient having a value of 0.98) to the form: 

Y = a, +a, x 

where Y = (l/p X P2 + a2/4p2): and X = (PI + ar/2p), a, 

(7) 

= -0.1 and a, = 1.04 
(instead of the ideal values of 0 and 1 respectively). This agreement is 
probably as good as one might hope to obtain; recently however, Cubbage and 
Marshall [lo] have queried this equation because it gives a wrong dependence 
on the burning velocity. Instead they have suggested a new equation, namely: 

P* = (UP1 + bP:j (8) 

where a and b contain terms dependent on the structure and the gas/air 
mixture involved, given by: 

ig> 

ho) 
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where VI = 
= 

:W)2,, = 

K = 192 
K2 = 
s = 

the volume of room 1 
the volume of room 2 
the average value of the term (KW) for the second room, 
which is the room into which the explosion propagates 
(see later for complete explanation, i.e. eqn. 13) 
the venting ratio between rooms 1 and 2 
the venting ratio for room 2 
the burning velocity of the gas/air mixture employed 

Since this equation does not predict the same dramatic increase in pressure 
given by eqn. 6 via the ‘cascade’ effect it is important to determine the extent 
to which such an effect can occur, for which further work is necessary. 

In a later publication [ll] further work is reported in which explosions 
occurring in one of a pair of adjoining rooms gave rise to three pressure peaks 
in the second room. The first peak resulted from the pressure rise in the first 
room, the second from the subsequent explosion in the second room and the 
third peak, which showed considerable spiking*, probably arose from the 
oscillations of the gas between the rooms. The origin of the third peak is not 
clear but as it appears to be much smaller than the second pressure peak, it is 
not of significance in practical venting problems. 

The work of Cubbage and Marshall [lo] also contains a modified venting 
formula based on earlier work of Cubbage and Simmonds [7,8] and that of 
Rasbash et al. [ 12,131. Support for their formula was supplied by data taken 
from a variety of enclosures ranging from a 0.9 m3 cubical steel box to a full 
scale load-bearing building with 4 rooms each of 28 m3. By using the 
method of dimensions and assuming that Pv = f(K, W,S,V) they conclude that: 

P max = P,+BKWS',V' (11) 

where B is a constant. 
Such an approach deserves comment in that K is dimensionless and it is 

therefore impossible to learn anything about the nature of the dependence of 
K on V’max - P,,) by such an analysis. Also the analysis is only likely to be 
valid if all important parameters have been included; one significant parameter 
that has not been included for instance is a term to account for the effect of 
turbulence. 

From an examination of their own data they conclude that when Pm,, 
and pV are expressed in kN/m’, W in kg/m2, S in m/s and V in m3, the con- 
stant B has a value of 2.35. Thus eqn. 11 becomes: 

2.35 KWS' 
P max = Pv+ 

V3 
(12) 

In order to take into account the situation where there is more than one 

*Spiking is a series of rapid excursions of pressure about the mean pressure time curve. 



31 

vent, they also defined a new parameter (KW) by analogy with the case of 
parallel resistors, such that: 

1 
P= 
WV, 

5 W=)j 
j=l 

(13) 

It was concluded that such an approach would be valid providing all the 
vents operated at similar pressures. Finally another parameter F(E, E,) was 
introduced into the equation to deal with the situation when the structure is 
not completely full of the explosive gas mixture but is present as a pocket or 
layer, such as might occur with an accidental release of gas. Thus eqn. 12 
becomes: 

P max = Pv + (2.35 KW S2,Vs) F(E, E,) (14) 

where E is the actual energy in the mixture and E,, the amount required to 
remove the vent, so that F(E, E,) is a measure of the,energy contained in the 
gas/air mixture in excess of that required to remove the vent. 

Cubbage and Marshall were unable to define F(E, E,) precisely but con- 
cluded that an appropriate form of the equation when the vent had a mod- 
erate or low operating pressure (PV less than 35 kN/m’) would be: 

F(E,EO) = l- exp- (15) 

For vents with a high breaking pressure (PV greater than 35 kN/m’) eqn. 15 
consistently underestimates the pressure achieved (typically by 15 per cent) 
and Cubbage and Marshall recommended instead that F(E, E,) be represented 
as: 

(16) 

Ideally F(E, E,) should adopt values of unity and zero when E is much 
greater than E. and E = E. respectively. Although eqn. 16 meets this demand, 
eqn. 15 does not since it tends to (1 - l/e) or approximately 0.63 when E is 
much greater than Eo. Thus it will tend to underestimate pressures for higher 
concentrations of gas by a factor of 50 per cent and it was therefore suggested 
that in situations where E was expected to be much greater than Eo, the 
original form of the equation i.e. eqn. 12 be used i.e. when the structure was 
likely to be completely or substantially full of flammable gas/air mixture. 

When the ratio (E -E,) / (E + E,) is much less than 1 which will occur when 
E tends to Eo, 

E-E0 E-E0 E-E0 
F(E,Eo) = E+E = - z - 

0 2E =0 
(17) 
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Now this may be expected to occur either when there is very little flam- 
mable gas in the structure or with vents having high operating pressures. Given 
that eqn.16 represents the best form of F(E, E,) for vents of high operating 
pressures then eqn. 15 would be expected to underestimate pressures pro- 
duced, as Pv tends to 35 kN/m’ (and hence E tends to E,) and could be in 
error by as much as 50 per cent. Some caution, therefore, needs to be 
exercised in the use of these alternative expressions for F(E, E,). 

Cubbage and Marshall have also specified the conditions over which they 
expect their equation to be valid. These conditions are (a) the ratio of the 
maximum and minimum dimensions of the confining structure, i.e. the ratio 
of the areas of the maximum and minimum sides in a rectangular structure 
is less than 3, (b) PV is less than 49 kN/m’, (c) K has values from 1 to 10, 
(d) W has values from 2.4 to 24 kg/m’ and (e) (KW) is less than 73 kg/m’. 
They conclude that these conditions are likely to cover most structures met 
in practice. 

Another attempt to relate the maximum pressure Pmax produced in an 
explosion is due to Rasbash et al. [12,13] who developed an empirical 
formula of the type: 

P max = AP,+BK (18) 
where PV is the operating pressure of the vent, A and B are constants (whose 
values depend on the nature of the gas mixture and other parameters such as 
turbulence) and K is the venting ratio. 

This equation has some similarity with eqn. 1. Perhaps the most significant 
difference is the absence of a term for the volume of the structure. In con- 
sidering eqn.18 a number of points need to be mentioned. The first is that 
this equation is entirely empirical and although it is reasonable to assume 
that Pmax varies with KR (where n is some positive number), Fig. 1 shows that 
the dependence of Pmx on PV is not nearly so obvious. Thus whereas PV will 
set the lower limit of the value of first pressure peak PI, the lower its value the 
greater the likely magnitude of any second pressure peak. Thus while eqn. 18 
may well predict the explosion pressures for a specific range of conditions, 
with an appropriate choice of A and B its predictions for other conditions 
cannot automatically be relied on. 

Rasbash obtained values for A, B for a stoichiometric propane-air mixture 
for values of W up to 24 kg/m2, PV up to 7 kN/m’ and K from 1 to 5. The 
values of A and B under these conditions were 1.5 and 3.5 respectively. It 
was noted however that explosion pressures were often much greater than 
those predicted by eqn. 18 in conditions where a high turbulence intensity 
was likely, e.g. in a partitioned compartment Rasbash found Pm= was up to 
2.5 times greater. Rasbash in fact argues that the term B is related to the 
burning velocity S and hence to the scale and intensity of turbulence. Un- 
fortunately however, no procedure seems to have been devised to provide an 
appropriate correction factor for the dependence of B on the scale and 
intensity of turbulence likely to be produced in any particular structure, nor 
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in fact does any attempt seem to have been made to demonstrate the depen- 
dence of B on S. 

Given the direct dependence of B on S, eqn. 18 may be written as: 

P mX = AP,+B'SK (19) 

and providing that the constants A and B' do not change significantly from 
system to system we may write eqn. 19 as: 

P max = 1.5 Pv + 7.7 SK (20) 

P max and Pv being expressed in kN/m’ and S in m/set. 
Rasbash appears to have used this approach in producing a modified form 

of his equation for natural gas/air explosions (S, = 0.36 m/set) of the form 

P max = 1.5P, + 2.8 K (kN/m’) (21) 

The work of Rasbash has recently been reevaluated by Butlin and Tonkin 
[14]. These workers have carried out experiments on the explosion of natural 
gas/air layers in a rectangular chamber of total volume 28 m3. Although they 
have not worked with the chamber full of a stoichiometric gas/air mixture it 
has been possible to obtain the appropriate data by extrapolation from their 
results. They conclude that their results do not correspond to those expected 
from eqn. 21. Values of Pm,, derived from this work and values obtained 

TABLE 2 

Comparison of values of P,,, 

Eqn. no. 
P max W/m) 

K=2 K=4 K=8 

Extrapolated value of P,, from 
Butlin & Tonkin [ 14 ] 

7 10 15 

21 

24 

28 

12 

24 

Value of Pmsx for Rasbash [12] 

Value of Pm,, for Burgoyne [ 15 ] 
(with adjusted constants) 

Value of Pmax from Dragosavic 
equation [ 6 ] 

Cubbage & Marshall (with 
adjusted constants) [ 10 ] 

Value of Pmax for Trense [ 351 
withM=27,N=O 

6.6 12 23.4 

7 14 21 

4.6 7.3 16.8 

7 13.3 26 

5.1 10.2 15.4 
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from other empirical equations discussed here are given in Table 2 for com- 
parison. 

As Table 2 indicates, pressures derived from Rasbash’s formula do not 
significantly differ from the extrapolated values of pressure for this limited 
set of results. However, the use of laminar burning velocities to describe 
explosions where significant turbulence may occur is questionable. It may 
well be best to write eqn.18 as: 

P 1118X = AP, + nB”SK (22) 

where B” is a constant and n is a turbulence factor having a value of 1 for 
quiescent mixtures and low turbulence conditions. Since some difficulty is 
likely to be experienced in choosing values for n, it may be considered 
simpler to use a more rigorous approach with theoretical justifications and 
therefore of positive predictive value. 

Another early attempt to produce a venting formulae was due to Burgoyne 
and Wilson [15]. They carried out work using various n-pentanelair mixtures 
in two cylinderical vessels, with diameters of 1.3 m and length to diameter 
ratios of 1 : 1 and 3 : 1 and total capacity of 1.7 and 5.7 m3 respectively, 
under fairly turbulent conditions. It was found that the pressures produced 
could be related by an equation of the type: 

P max = MlogA/a-N (23) 

where M and N are constants having values of 475 and 200 when the pressure 
is expressed in kN/m*, ‘A’ is the cross-sectional area of the vessel and ‘a’ is 
the relief area. Thus eqn. 23 may be written as: 

P max = MlogK-N (24) 

This type of function has an attractive feature that is not present in eqns. 
11 and 18. Thus eqn. 24 predicts that Pmax is going to be relatively insensitive 
to changes of K for large values of K, as dPmax/dK equals M/K, whereas eqns. 
11 and 18 predict that dPmax /dK equals some constant. However, such an 
equation is clearly unable to deal with situations where venting is good and K 
adopts low values. Since Pm= cannot adopt negative values the equation will 
break down if K is less or equal to 10NjM (for Burgoyne’s experimental sys- 
tem this would be at K = 2.6). 

By setting M = 27 and N = 0 this formula provides a reasonable fit to 
the data of Butlin and Tonkin [14] as Table 2 indicates. This fact outlines 
the difficulty of such formulae. For providing one has a function which gives 
a smooth curve, then by appropriate choice of constants it is nearly always 
possible to obtain a reasonable fit for a limited range of conditions and data. 
Later workers do not appear to have produced equations with a logarithmic 
dependence of K on Pmx. 

A more recent formula has been produced by Dragosavic [5] for a cubical 
brick structure of approximate volume of 66 m3. This structure was divided 
into two compartments of dimensions 4 m wide, 3.5 m long and 4 m wide, 
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2 m long (the height of the compartments is not given but can be estimated 
as approximately 3 m from the photographs supplied in the report). Thirty- 
four explosions were carried out, mostly with a stoichiometric natural gas/air 
mixture. The maximum value of the first pressure peak PI was estimated as: 

0.8 PI = P,' = 3 + Pv (kN/m*) (25) 

and the second as: 

0.8 P2 
0.04 

= P; = 3+0.5p,+ - J/2 (kN/m*) 

where $ is a volume venting coefficient equal to the area of the vent over the 
volume of the enclosure. The factor of 0.8 has been introduced to convert 
the dynamic pressure PI and P2 to a static pressure equivalent, Pi and Pi. 

These equations can be general&d as: 

P; = A+P, (27) 

P; = A +BP,+C'K* (28) 

where A and B are constants and C’ is a constant dependent on the composi- 
tion and proportion of the gas mixture employed and the square of the 
greatest linear dimension of the structure concerned. 

These equations realistically predict a positive pressure even in the situation 
where the vent is open and in this form also correctly indicate that explosion 
pressure ought to be dependent on the length or depth of the structure. Hence 
eqns. 26 and 28 are likely to overestimate the pressure produced for low 
values of + and high values of K. Thus Table 2 (which shows the predicted 
values of Pmax obtained with Dragosavic formula and Butlin and Tonkin’s 
data [ 141) indicates, as might be expected, an increasingly poor agreement 
between the predicted and measured pressures as K increases. 

Perhaps the best way of assessing the validity of the various formula can 
be seen from Fig. 2. 

The results presented in Fig. 2 are taken from the work of Cotton and 
Cousins [ 161 for a 5 per cent propane/air explosion in a tank of volume 1 m3 
containing an open vent. Curves from the various formulae have been included 
in Fig. 2 using the constants given. The logarithmic plot of the type employed 
by Burgoyne and Wilson is of the same form as the experimental curve and is 
able to follow the experimental curve for the range of values of K used. A 
better fit is provided by an equation suggested by Trense [35]. 

One of the difficulties of using these formulae arises from the number of 
factors likely to affect the dependence of Pmax on K. Thus it seems reason- 
able that curves showing the dependence of Pmax on K is low and the most 
important factor in determining the magnitude of Pmax is the inertia of the 
gas; however, Pmax will develop rapidly with increases of K. The second region 
is one in which Pmax is principally influenced by the value of K and over 
which the work of Rasbash et al. indicates that curves of the type Pmx = 



P zA+BK (A=O. l3=3.5) Eqn (181 
--- p* = $j K (So=0.46m/s) Eqn(5) 

------ P = 6 log K+A (8=141,A=O) Eqn(24) 
. . . . . . . . . . . . . . p2 = ,K Eqn (2) 
---.- P = A+BK2(A=4.1.6=0.38) Eqn(28) 

l = Data from ref 16 
_..- - P = 879K +I% Ref 35 

Fig. 2. A comparison between the predicted maximum explosion pressures for various vent 
sizes given by empirical formulae and experimental data. 

A + BK can be satisfactorily employed. While the third region is one in which 
P is tending to a limit, i.e. that of a closed container, which is determined 
by%e chemical energy and mass of reactant, and is therefore relatively 
insensitive to changes in K. 

The presence of a vent does not basically alter this analysis but rather tends 
to shift the values of Pmax into the third region. Thus for example, a massive 
vent cover, or one with a high operating pressure, is liable to allow P,, to 
approach its limit before the vent opens so that the dependence of Pmax on K 
is that typified by the third region. If this analysis is correct then no one 
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single simple function of K is likely to predict the value of P,, on i over all 
three regions. 

Another approach has been developed by Decker [17] and depends on the 
evaluation of two equations, which have been produced assuming central 
ignition. These are: 

RV V 

Q=P=t 

A= 
RV(M,T)’ = V(M,T)’ 

3OP 30t 

(29) 

(30) 

where Q = volumetric flow rate at the relieving conditions (m3/s) 
R= maximum rate of explosion pressure rise (kN/m’ s) 
V = the initial volume occupied by the explosion mixture (m3) 
P = set operating pressure of the relief vent (kN/m’) 
A = required relief area (m2) 
M = the equivalent molecular weight of the gas or vapour 
T= the temperature of the vented vapour (K) 
t = the time in seconds to attain the maximum pressure at a given 

rate of pressure rise. 
Eqn. 30 was derived by Decker using the ASME flow formulae for mixed 

vapours [18] (i.e. eqn. 31 and eqn. 29). 

W= 13.5 aP(M& (31) 

where W is the theoretical flow (kg/s) and ‘a’ is the effective orifice or dis- 
charge area (m’) while R or t are derived using the ‘cube law’ relationship: 

1 

(32) 

where tl, VI and R 1 are the test vessel values and t, V and R are values for 
the vessel to be protected (V being limited to the maximum spherical volume: 
possible with the vessel to be protected). 

Alternatively t can be determined from a diagram of the average rate of 
pressure rise dP/dt against time, constructed by the method of Latamme [19] 
using the equation: 

1ogP + log v-1ogc = 0 

where C is a constant. 

(33) 

One obvious disadvantage of such an approach is the need to measure ex- 
perimentally R 1, VI and tl for every gas or vapour mixture to be employed. 
Another problem is that the scale and intensity of the turbulence produced 
in the test vessel must be similar to that in the vessel it is desired to protect, 
otherwise the ‘cube law’ will not be applicable as the radial flame speeds will 
be different. There is also some difficulty in evaluating T and it will normally 
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have to be estimated by some rule of thumb method. Decker in fact recom- 
mends T to be taken as 278 K less than the maximum flame temperature 
recorded in the combustion literature, or alternatively put equal to 2000 K if 
that is not known. 

Unfortunately there appears to be no experimental evidence as to how well 
the scaling approach used applies to large volume. In addition since the equa- 
tion demand that the maximum pressure produced by the explosion is not 
significantly greater than the operating pressure of the relief, it may well be 
necessary to operate with unrealistically large vents. 

Another approach has recently been developed by Runes [ 201. He made 
the assumption that the maximum rate of pressure rise is produced when the 
flame reaches the side of the vessel or, in the case of a rectangular structure, 
when the flame touches the side of minimum dimensions (assuming central 
ignition). 

Given that assumption the eqn. 34 was derived: 

QIXI = Am Vf [Wf/Mi) (Tf/Ti) - 11 (34) 

where Qm = the maximum rate of increase in the volume of the gas 
AIll = the maximum area the flame can achieve 
Vf = the flame velocity 
Mi = the initial number of moles of gas 
Mf = the final number of moles of gas 
Ti = the initial gas temperature 
Tf' = the adiabatic flame temperature 

Am is nD2 for a sphere of diameter D and is given as L 1 Lz for a rectangular 
structure whose smaller and second smallest dimensions are L1 and Lz 
respectively, while the term (Mf/Mi) (Tf/Ti) is approximately equal to the 
ratio of the final and initial pressure for a completely confined explosion. 

The vent is regarded as an orifice discharging unburnt gas and the rate of 
discharge Qs is given by: 

1 1 

where Y = expansion factor 
C = the flow or discharge coefficient 
g = the acceleration due to gravity 
AP’ = the differential pressure in kg/m’ 
AP = the differential pressure in kN/m’ 
D = the density of the discharged gas in kg/m2 
A” = the vent area in m2 

N.B. this equation is incorrectly presented in Runes original paper since the 
term 2 g/D is left outside of the square root term. 

Runes has assumed that for an explosion occurring at ambient temperature 
and pressure and discharging at high velocities Y = 1 and C = 0.6. The density 



39 

D has been assumed to have a value of 1.362 kg/m3 and on that basis eqn. 35 
may be reduced to: 

QS = 0.73 Av CP (36) 

The maximum pressure fvill be attained when Qm is equal to Qs in which case: 

(37) 

Runes has compared the predicted results for his equation for specific vent 
areas with the experimental results obtained at the Bromma tests [21] for a 
203 m3 chamber. The results are given in Table 3. 

As can be seen from Table 3, eqn. 37 overestimates pressures by a factor 
of up to 2.7. This must be regarded as a serious limitation of the equation as 
it requires the use of larger vents than are necessary in the structure to be 
protected. 

TABLE 3 

Test Vent Measured Calculated 
no. area pressure pressure 

(m2) W/m’) (kN/m’) 

18a 21.6 3.5 9.71 
18b* 21.6 5.87 9.71 
19 17.3 6.22 15.1 

*In test 18b a fan was used to promote turbulent conditions. 

From eqns. 34 and 35 assuming that AP equals Pm, minus the ambient 
pressure P, then we may write: 

P max =p+ yzc2 
-E [($) (2) - II2 v;lc2 (38) 

or Pmax = A+BVfZK2 (39) 

where A = P, the ambient pressure 

B= 

and is a constant for any particular system. 
Thus Runes equation has some similarity to eqns. 26 and 28. The major 

unknown in eqns. 38 and 39 is V$ . Since there is no simple way of deter- 
mining the scale and intensity of the turbulence produced in an accidental 
explosion, and the turbulent burning velocity may be up to an order of mag- 
nitude greater than the laminar burning velocity which is commonly used, 
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one might well expect eqns. 37-39 to underestimate the pressure achieved. 
In fact the reverse appears to be true. Only when conditions are turbulent 
does the experimental pressure achieved approach those predicted by eqn. 37. 

There are two obvious reasons for this discrepancy. The first occurs because 
the basic assumption that the maximum pressure is achieved when the flame 
touches vessel walls is not necessarily true. More specifically this assumption 
is only likely to be true when the second pressure peak, P2 is greater than the 
first, PI. The second occurs because the approach ignores the effect of the 
loss of reactant through the orifice and is therefore likely to overestimate the 
pressure on this basis as well. 

In addition there are other problems with the approach, such as the dif- 
ficulty of correctly estimating the value of the discharge coefficient C and 
the fact that these equations have no functional dependence on the opera- 
tional pressure of the vent. Given these facts it is possibly better to regard 
Runes equation as predicting an upper limit of Pmax rather than the actual 
value likely to be achieved. 

All approaches considered so far either rely on completely empirical rela- 
tionships or they have to estimate or ignore many parameters. A more 
rigorous theoretical approach is therefore desirable. An early attempt at 
producing a rigorous theoretical treatment of the problem of explosion 
venting was due to Munday [23]. His approach assumes that the gas or vapour 
burns adiabatically and that the pressure in the vessel is above the critical 
value for sonic discharge. Given these assumptions a number of different 
equations were set up and solved by finite difference methods for two geo- 
metric shapes, a duct and a sphere. An exact solution of these equations was 
possible when the ratios of the specific heats for the unburnt and burnt gases 
were equal and an approximate solution was obtained when they were not. 

The equations so produced were compared with measurements made for 
pentanelair [24] explosions in a duct vented at one end, and also for propane/ 
air and hydrogen/air explosions [ 161 in a nearly spherical vessel. The agree- 
ment between the theoretical and experimental results were shown to be 
reasonably good. However, this approach cannot be applied to most practical 
situations because most industrial and domestic structures must be considered 
intrinsically weak, and at the critical pressure for sonic discharges most plant 
and structures would normally be demolished. Thus under atmospheric con- 
ditions the criteria for sonic venting, namely that PO is greater or equal to 
1.86 P would require that the vent operated at 27 lb/in2 or 191 kN/m’. At 
these pressures Clancey [26] states that one may expect the total destruction 
of buildings and that heavy machine tools (3200 kg) will be moved and badly 
damaged. Its use therefore is likely to be restricted to certain ‘intrinsically’ 
strong industrial equipment. 

Later Munday extended these equations to cover the subsonic venting case 
by neglecting certain terms in his original equations. This allowed them to be 
simplified and enabled the vent area for a specific criterion of safety to be 
determined. This criterion requires that once explosion relief has been 
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effected, the pressure in the vessel never rises significantly above that level. 
The equations for the sonic venting condition which is assumed to occur -- 

when the operating pressure of the vent PO is greater or equal to 1.86 P, P being 
the pressure of the surroundings, into which the explosion vents (usually 
ambient) are : 

AC 
a, =- 

& 

p; $5 

i 

(41) 

(42) 

For the subsonic venting case (which is assumed to occur when PO is less than 
1.86 P) these equations are: 

a, = H’bFP;P; (-@) (43) 

where: A, = 

A, = 

P = 

PO = 

Pi = 

&,H’ and C$ 1 

F = 

Also: 

(44) 

effective area of the vent (i.e. the vent area corrected 
for real gas flow by the use of a discharge coefficient) 
the area available for positioning the vent (either the 
total surface area for an approximate spherical vessel 
or the cross sectional area of an elongated vent or duct) 
the pressure of the surrounding atmosphere into which 
the explosion is vented 
the operating pressure of the relief 
the initial pressure in the vessel 
ratio of specific heats 
rates of pressure rise terms (with H and H’ showing a 
dependence on a turbulence factor f and the fundamental 
flame speed under initial conditions) 
configuration/ignition factor (F = 1, 2 or 4 for central 
ignition in a nearly spherical vessel, ignition at one end 
and central ignition in an elongated vessel respectively). 

b 
pe - ps =- 

PS 
(45) 

where: P, = the maximum pressure attained in the closed vessel explosion 
P, = the pressure at start 

There is unfortunately an important limitation of Munday’s equation for 
the subsonic venting case. This limitation is imposed by the criterion that the 
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explosion pressure does not significantly rise above the vent operating 
pressure. In practice this will mean the vent size must be adjusted in order 
to ensure the first pressure peak P1 is always the greatest, as well as preventing 
the magnitude of this peak from becoming significantly larger than that of 
the operating pressure. 

To achieve this it may well be necessary either to use vents which have 
a higher operating pressure than is necessary and therefore reduce the degree 
of safety, or alternatively to use vents that are larger than otherwise would 
be necessary. This restriction may well mean that Munday’s approach is of 
limited value in many circumstances where it is not technically feasible to 
use ‘very’ large vents. 

One of the most recent approaches is due to Yao et al. [27,28,29] who 
have produced a set of differential equations to describe the behaviour of 
vented explosions based on the law of conservation of mass and the assump- 
tion of adiabatic compression. The model also takes into account the depen- 
dence of burning velocity on pressure and temperature and the effects of 
high initial pressure and sonic discharge on the pressure development. 

These equations are* : 

(1) Dimensionless rate of change in pressure in the enclosure: 

dS -= 
d7 

s.,,(~ -1)$3r-2)b~~2~3 

(2) Dimensionless rate of change in burned gas in the enclosure: 

(3) Dimensionless rate of change in unburned gas in the enclosure: 

For subsonic flow : 

For the sonic flow case, when: c > - 

(46) 

(47) 

(43) 

(49) 

*These equations are incorrectly presented in the original papers. 
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N-1 

(r+l)/(r-l) 

I 

112 

E =z 7-l 
#7+1)/Y 

Dimensionless pressure: 

5 
p(t) =- 
PC.9 

Dimensionless time: 

7 = rv213s/a 

Dimensionless burned gas remaining: 

t = M,, (t)/Mo 

Dimensionless unburned gas remaining: 

h = Mt.&MO 

Dimensionless density ratio: 

v = M,,Tb(o)/MbTu(o, 

or: 

Explosion venting parameter for a spherical vessel: 

43 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

where: V = the volume of the enclosure 

: 
= the equivalent radius of the enclosure 

Mtb 

= the vent area 
= the burned gas remaining in the enclosure 

Mru = the unburned gas remaining in the enclosure 
MO = the initial gas mass in the enclosure 

P(O) = the initial pressure 

ptu = the ambient pressure outside the enclosure 

PO, = the reference pressure (normally atmospheric pressure) the 
burning velocity S is measured. 

P(t) = the pressure inside the enclosure at any time 

p&I = the maximum pressure in a closed vessel 

PW) = the density of unburned gas at initial pressure 

pb(o) = the density of the burned gas at initial pressure 
X = the turbulence correction factor 
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$b,tiu = the fraction of the total opening area from which the burned 
and unburned gases are flowing out respectively. 

T,,,t, = the absolute temperature of the unburned mixture at any 
time after ignition 

T U(T) = the reference temperature at which S is determined 
P = an exponent indicating the dependence of the burning velocity 

S on pressure 

By setting the venting parameter CY equal to zero Yao was able to show that 
one could satisfactorily describe explosion development in closed vessels, 
which indicates the versatility of this approach. More importantly, with the 
correct choice of turbulence factor X, the equations were able to duplicate 
the pressure time curves for a 5 per cent propane/air explosion in a 0.76 m3 
cubical enclosure, two 0.91 m diameter cylindrical chambers of 0.91 and 
8.2 m length respectively, including the double pressure peak phenomena. 
This fact probably makes Yao’s approach the most promising of those now 
available, although it has been tested on the small scale only. 

For computational purposes Yao et al. have chosen to set: 

$U = A/([ + A) (56) 

J/b = t/e +A) (59) 

This choice must be regarded as somewhat arbitrary, ignoring as it does the 
geometric and other factors which will govern the degree of mixing of un- 
burnt and burnt gases and their relative concentrations at the vent. However 
this will hold good at the limits (i.e. at the beginning and end of the explosion) 
and represents a simple solution to what otherwise might prove an intractable 
problem. 

There exists, however, one major weakness in the method which is the need 
to choose the correct value of the turbulence factor x, since that choice is 
at the moment arbitrary. It is also unlikely that the scale and intensity of 
turbulence remains constant through an explosion, although to a first approx- 
imation this may be so. In addition, Yao himself reports that the second peak 
is more sensitive to the effects of turbulence [28,29] in which case greater 
care will be necessary in evaluating X when the second pressure peak is likely 
to be the largest. 

Another feature of interest in Yao’s work is the choice of venting param- 
eter. Yao has used a venting parameter (Y which is related to the venting area 
parameter G in the following manner: 

aA, 
CK = constant x - 

[ 1 V 
= constant X [G] (60) 

For a spherical enclosure: 

aA, G=-= 
V 

(61) 
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where AT is the total surface area. Hence a is related to K, i.e. for a spherical 
enclosure: 

G = 3/K 

For cubical enclosure: 

(62) 

G 
aAV 4A, 2 2 z-e- =- 

V AT 3A/AV = %ii 
(63) 

where A = area of a side of the enclosure. 
Thus (Y is a dimensionless parameter of the system and may be related to 

some constant divided by K. 
A similar approach to that of Yao et al. is due to Pasman et al. [ 301. These 

workers have also produced a set of differential equations to describe the 
behaviour of vented explosions based on the law of conservation of mass and 
the assumption of adiabatic compression. Unlike Yao they have considered 
the case of explosions in cylindrical vessels vented at one end and have 
assumed that only unburnt gas is vented. The flame ball upon touching the 
side of the vessel, is considered to develop as two constant hemispherical 
surfaces travelling in opposite directions, central ignition being assumed. The 
actual equations will not be presented here as they are not given in the final 
form in which they are solved. 

To verify their approach experiments have been carried out on stoichiometric 
methane/air and hydrogen/air mixtures in a 1 m3 cylindrical vessel as devel- 
oped by Bartknecht [ 311. Reasonable agreement between experimental and 
theoretical work with the appropriate choice of turbulence factor is reported. 

This work is open to the same criticisms as that of Yao et al. namely the 
experiments have been carried out on the small scale only and also the 
approach requires the use of a turbulence factor which must be determined 
empirically. 

Recently Nettleton [32] has attempted to produce an analysis of vented 
explosions using the methods of characteristics [33] to describe the behaviour 
of pressure waves produced by bursting diaphragms in differently shaped 
vessels. The suggestion is also made that the reflection of the expansion fan 
may partly explain the existence of the double pressure peak phenomena so 
far observed with vented explosions. 

The work carried out has employed two tanks (one 47 mm square cross 
section and 300 m long and the other 47 by 109 mm in cross section and 
500 mm long) as the vented vessels. Both of these were connected to sections 
of tube (of cross-section 47 X 22 mm) either by means of an abrupt or gradual 
transmission section which contained a number of flanges to allow a cellophane 
diaphragm to be positioned at different distances down the tube. The tank 
and the associated portions of the tube were slowly pressurised until the 
diaphragm burst, whereupon the pressure history in the tank was followed 
by means of pressure transducers situated at various points. In order to ob- 
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tain reproducible results, Nettleton reports that it was necessary to evacuate 
the low pressure side of the diaphragm to a few hundred N/m’, when this 
procedure was followed a double peak phenomena occurred within approx- 
imately 5 ms of the rupture of the diaphragm. 

In considering this work a number of points may be raised. The first is 
that it is difficult to see what formal relationship Nettleton’s system has 
with those employed by other workers such as Rasbash [12] and Yao [29]. 
The normal deflagration explosion event considered in venting problems is 
associated with a continuously expanding flame front whose speed is such 
that the transmission of pressure can be considered effectively instantaneous. 
Nettleton on the other hand considers the decay of a fixed pressure in a 
closed system due to an expansion wave, the double pressure peak being due 
to the reflection of the wave. Thus his overall system seems more reminiscent 
of a shock wave system than a normal deflagration explosion. 

Nettleton refers to the pressure records obtained by Burgoyne and Wilson 
[15] and Harris and Briscoe [6] from vented explosions which show an initial 
small peak followed by a second peak of much greater amplitude. On 
examination of Burgoyne and Wilson’s work it would appear that a multiple 
pressure peak phenomena occurring under highly turbulent conditions with a 
spring-loaded plate valve is being referred to (i.e. Figure 5 in Burgoyne and 
Wilson’s paper [15] ) while in the case of Harris and Briscoe it appears that 
once again a multiple pressure peak phenomena is being discussed, which also 
occurs under highly turbulent conditions (i.e. Figure l(c) of Harris and 
Briscoe’s paper [6] ) where the assumption that pressure transmission is 
effectively instantaneous may well be questionable. 

However, Harris and Briscoe have shown another pressure record in which 
the first peak is greater than the second and the two peaks are separated by 
120 ms (i.e. their Figure l(b)) conditions under which the second peak is un- 
likely to be due to the reflection of an expansion wave [6]. Generally this 
type of phenomenon is more typical of vented deflagration explosions, where 
the two peaks may change their respective sizes and tend to be separated by 
time intervals of 100 ms or more. Thus whereas Nettleton’s explanation for 
the double pressure peak phenomenon he observes in his own experiments is 
no doubt valid, and may well be the correct explanation for the pressure 
spiking so often observed on explosion pressure-time records [ 51, it would 
appear likely that the double pressure peak phenomenon frequently observed 
with vented explosions arises for fundamentally different reasons and is a dif- 
ferent phenomenon from the one he describes. 

The conditions and scale of Nettleton’s work are so different from those 
normally employed that it will take a considerable time before the full 
implications of his work on explosion venting problems are likely to be 
demonstrated. Thus although Nettleton’s treatment is clearly valid for the 
system he considered, it does not seem immediately applicable to practical 
domestic or industrial venting problems. 
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Nettleton has also produced a guide to the empirical rules used in venting 
explosions [34] with particular reference to “volumetric explosions”. These 
are described as explosions in which the burning time of the particles is 
similar to the ratio of the characteristic length of the vessel to the burning 
velocity of the cloud. Typical pressure profiles are characterised by an initial 
slow development followed by an increasingly rapid pressure rise, which will 
be 10 to 100 times that of the initial slow rate, the pressure finally falling off 
again to produce an ‘S’ shaped curve. The maximum pressure ratio associated 
with such a process will be approximately equal to the ratio of the tempera- 
ture of the burnt gases to that of the unburnt gases. 

Nettleton indicates that time for the expansion wave (i.e. a negative dP/dt 
wave) to travel to the further extremity of the vessel is of great importance, 
in these explosions. Thus if the time for the vent operating pressure and 
opening becomes greater than the period of slow pressure rise then the 
pressure may rise at the furthest extremity of the vessel, at a sufficiently fast 
rate to damage the vessel before the expansion wave arises. In that event all 
approaches which assume effectively instantaneous pressure transmission will 
be invalid and Nettleton recommends instead the use of the method of char- 
acteristics to determine the pressure-time characteristics of the explosions as 
outlined in the earlier paper [ 321. 

As an illustration of this type of danger Nettleton has calculated the 
minimum time ‘rmin for venting to occur for a hypothetical volumetric 
explosion. The explosion occurs in a 3 m long 1 m diameter cylindrical vessel 
vented at one end by a vent of 1.5 m*. The msximum permissible pressure is 
given as 150 kN/m* and the vent operating pressure is 120 kN/m*, the 
explosion is considered to produce a slow rate of pressure rise of 200 kN/m*/s 
for the first 100 ms followed by a fast rate of pressure rise of 5000 kN/m*/s. 
Assuming rhn to be the sum of the times for the vent operating pressure to 
be achieved, the vent to operate and an expansion wave to travel to the 
furthest extremity of the vessel, Nettleton is able to show that for likely 
values Of Tmin the pressure at the furthest portion of the vessel will rise to 
160 kN/m* or more. 

An important comment that can be made about this calculation is that the 
choice of figures for the maximum permissible pressure and the vent operating 
pressure are appropriate only to intrinsically strong plant. Thus in most 
domestic and industrial situations the probability is that the vent operating 
pressure will be achieved well within the period of low pressure rise and the 
assumption that pressure is transmitted effectively instantaneously will be 
good. 

Conclusion 

Of all the approaches so far examined that of Yao [27-291 seems most 
promising since it has theoretical justification and is the most versatile 
approach of those examined. Its major weakness is the need to introduce an 
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arbitrary turbulence factor as a multiplier to the burning velocity. The 
production of an adequate mathematical model for confined deflagration 
explosion will therefore depend on resolving the problem of turbulence. Yao, 
however, has incorporated most factors for the production of an adequate 
formula and it would therefore seem worthwhile to develop this approach. 
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